Non-Archimedean Hénon maps, attractors, and horseshoes

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Three-Dimensional HÉnon-like Maps and Wild Lorenz-like attractors

We discuss a rather new phenomenon in chaotic dynamics connected with the fact that some three-dimensional diffeomorphisms can possess wild Lorenz-type strange attractors. These attractors persist for open domains in the parameter space. In particular, we report on the existence of such domains for a three-dimensional Hénon map (a simple quadratic map with a constant Jacobian which occurs in a ...

متن کامل

Shift spaces and attractors in noninvertible horseshoes

As is well known, a horseshoe map, i.e. a special injective reimbedding of the unit square I2 in R2 (or more generally, of the cube I in R) as considered first by S. Smale [5], defines a shift dynamics on the maximal invariant subset of I2 (or I). It is shown that this remains true almost surely for noninjective maps provided the contraction rate of the mapping in the stable direction is suffic...

متن کامل

Superstability of $m$-additive maps on complete non--Archimedean spaces

The stability problem of the functional equation was conjectured by Ulam and was solved by Hyers in the case of additive mapping. Baker et al. investigated the superstability of the functional equation from a vector space to real numbers. In this paper, we exhibit the superstability of $m$-additive maps on complete non--Archimedean spaces via a fixed point method raised by Diaz and Margolis.

متن کامل

Reversible Complex Hénon Maps

We identify and investigate a class of complex Hénon maps H : C2 → C2 that are reversible, that is, each H can be factorized as RU where R2 = U2 = IdC2 . Fixed points and periodic points of order two are classified in terms of symmetry, with respect to R or U , and as either elliptic or saddle points. Orbits are investigated using a Java applet which is provided as an electronic appendix.

متن کامل

superstability of $m$-additive maps on complete non--archimedean spaces

the stability problem of the functional equation was conjectured by ulam and was solved by hyers in the case of additive mapping. baker et al. investigated the superstability of the functional equation from a vector space to real numbers.in this paper, we exhibit the superstability of $m$-additive maps on complete non--archimedean spaces via a fixed point method raised by diaz and margolis.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in Number Theory

سال: 2018

ISSN: 2522-0160,2363-9555

DOI: 10.1007/s40993-018-0105-2